Rubbers under high triaxial loads

PJ Gould
Impact against propellant – Insensitive Munitions

• We have a duty of care for our armed forces

• Our weapons should only explode when and where we want them to

• NATO standard for Insensitive Munitions response
 – Fragmenting munitions attack (Fragment Impact)
 – No response more severe than Type V (Burning)
 – Steel fragment from 15 g with velocity up to 2600m/s and 65 g with velocity up to 2200m/s.

• These tests are really expensive and a cost-effective approach to assurance is needed

• Small-scale approach using highly-instrumented tests on small amounts of material
 – Still expensive and needs material to be available

• Ideally we would be able to predict response from chemistry and physics
Impact against propellant

• Shock-to-Detonation Transition and No reaction
Impact against propellant

• Unknown (X) to Detonation Transition
Impact against propellant

• Need to predict – consider the material response

• Impact conditions
 – Uniaxial strain
 – Implies Poisson’s ratio is zero but these are large volumetric deformations
 – Sub microsecond response: strain rates 10^7/s
 – Pressure 6 GPa
 – Temperature?
 – Mechanical work with heat capacity
 – Entropic effects with high hoop strain at rear of block

• What are the things we need to predict?
Group Interaction Modelling

• Group Interaction Modelling (GIM) is a group contribution method for predicting properties of polymers without need for synthesis or measurement.
 – Originated in polymer industry
 – Significant evidence of predictive capability
 – Can predict physical and mechanical properties as a function of rate and temperature through the glass transition

• Mean Field description of energy-deformation response
 – Van der Waals and Hydrogen bonding
 – Can be predicted via quantum mechanics codes
 – Account for vibrational modes and conformational state
 – Equivalence of thermal and mechanical energy

• Interacting groups have characteristic contributions to parameters used:
 – M molecular weight of a group
 – V_w (cc/mol) van der Waal’s volume of a group
 – E_{coh} (J/mol) cohesive energy of intermolecular forces
 – θ_D (K) 1-D Debye reference temperature related to polymer chain stiffness
 – N skeletal degrees of freedom per group
GIM

• Potential function method
 – Lennard-Jones and self-similar
 – Born criterion for instability
 – Stress and bulk modulus from derivatives of $E(V)$
 – Put P vs V into Rankine-Hugoniot equations
 – Shock equation of state
 – Also get tensile response which is hard to measure

\[P = -\frac{dE}{dV} \]

• Point of inflection correlated with glass transition
 – Is L-J sufficient for this?
Pressure vs volume

- Rubbers are not incompressible
- Hugoniot from GIM potential function
 - Allows shock propagation to be predicted
- Some questions arise about volumetric loss through glass transition
 - In particular: how does one predict the factor 2 in bulk modulus change?
 - Link to thermal expansion
 - Further questions then about thermal expansion coefficient of plasticized rubbers
Pressure vs volume

• Validation against ring-down
Pressure vs volume

- Comparison of VISAR and HetV with numerical simulation (GRIM)
- The differences reflect details of the experimental arrangement not being included in the simulation and known physics missing from the material model
Heat Capacity

• 1-D Debye Theory
 – VV Tarasov, Russian Journal of Physical Chemistry 39 (1965) 1109
 – B Wunderlich: ATHAS database

• Chain skeletal modes contribute directly to potential function and thermal energy

• At glass transition need extra 0.5N degrees of freedom

• Group optical modes treated as Einstein oscillators

\[
C \approx NR \left(\frac{6.7T}{\theta_D} \right)^2 \frac{1}{1 + \left(\frac{6.7T}{\theta_D} \right)^2}
\]

\[
C_E = \frac{R \left(\frac{\theta_E}{T} \right)^2 \exp\left(\frac{\theta_E}{T} \right)}{\left[\exp\left(\frac{\theta_E}{T} \right) - 1 \right]^2}
\]

\[
H_T = \int_0^T C \, dT
\]
Heat Capacity – pressure effect on heat capacity

- Movement of T_g as a function of pressure can be seen in poly(styrene) data*
 - Isothermal data
 - Loss peak appears to broaden
 - If T_g moves above current temperature then extra degrees of freedom should be suppressed
 - Would have a significant effect on heat capacity
 - What happens adiabatically?
 - How does this tie in with instability condition for glass transition?
 - HTPB would require imposed pressure of 400 MPa to move T_g above room temperature
 - Heat capacity would drop from 2 J/kg/K to 1.5 J/kg/K
 - Needs verification

\[
\frac{dT_g}{dP} = 4 \frac{P}{B Nk}
\]

*Ougizawa, GD Dee, DJ Walsh, Polymer, 30 (1989) 1675
Heat Capacity – pressure effect on heat capacity

- Should be working with volume but this has practical issues
- Pressure/volume affects Debye θ temperatures which changes the vibrational modes
- This reduces heat capacity
- Use QM to calculate new vibrational modes for different pressures and new θ temperatures
- Additional to movement of glass transition but there is a feedback
 - Need to avoid double counting

Debye temperatures can be included into model to suggest heat capacities at high pressures.

At 5 GPa and 300K

HTPB $C_v = 1.0 \text{ J g}^{-1} \text{K}^{-1}$, RDX $C_v = 0.79 \text{ J g}^{-1} \text{K}^{-1}$

Can use Dreger & Gupta measurements under same conditions to give RDX $C_v = 0.81 \text{ J g}^{-1} \text{K}^{-1}$

Strength of rubber

• Good capability to predict rubber extension and failure in uniaxial tension

• Entropic stiffening treated as loss of degrees of freedom in modulus calculations

• Fracture when all degrees of freedom associated with glass transition have been lost

• Good prediction of silk properties – Vollrath & Porter

• How does this extend to 3D strain?
 – Particularly tensile

• How does it tie in to fracture mechanics and fragmentation?
 – And temperature?

Fragmentation

- There is an obvious lengthscale from microstructure

- So use a percolation model with energy-based failure criterion
 - Site percolation: bond is either failed or not
 - Site size is microstructural length
 - Energy gives probability of failure which translates to number of failure sites in 3D lattice
 - When there is no fully-bonded path material is fragmented
 - Gives fragment size distribution

- Allows other capability such as burn area calculation

- What happens if there is no obvious lengthscale?
 - Comminution limit of rubbers?
 - Link to fracture mechanics
Fragmentation

- Validation against soft capture
- Compare model predictions with measured fragment distributions and shape of fragment cloud
- Importance of numerical scheme
Summary

• Some predictive capability

• Some fundamental questions still to be answered
 – Temperature
 – Time-dependence of volumetric properties
 – Configurational entropy in triaxial stress states
 – Particularly tensile